スポンサーリンク
Machine Learning

視覚野とConvolutional Neural Networkの構造について

「ディープラーニング 学習する機械 ヤン・ルカン、人工知能を語る」で書かれていた視覚野とConvolutional Neural Network(CNN)の関係が興味深かったので、まとめてみました。 2012年の爆弾とCNNの始まり 201...
librosa

Per-Channel Energy Normalization(PCEN)の性能確認【PyTorch】

キーワードスポッティングや音イベント検出で、対数log-melや対数スペクトルに変わる特徴量として提案されたPer-Channel Energy Normalization(PCEN)の性能を、yes/noのspeech commands ...
librosa

【PCEN】対数log-melに代わる特徴量PCEN【librosa】

音声識別や音響イベント検出の特徴量として、対数メルスペクトルがよく用いられています。この対数メルスペクトルに代わる特徴量として、2017年にPer-Channel Energy Normalization(PCEN)が提案され、性能が向上す...
PyTorch

2つのTensor配列の要素ごとの最大値・最小値を取得するtorch.maximum、torch.minimum、torch.fmax、torch.fmin【PyTorch】

2つのTensor配列の要素ごとの最大値・最小値を取得するtorch.maximum、torch.minimum、torch.fmax、torch.fminを使う。 torch.maximum - PyTorch v1.11.0 docum...
PyTorch

【PyTorch】最大値、最小値を取得するtorch.max、torch.min

PyTorchでTensor配列の最大値、最小値を取得するためには、torch.maxとtorch.minを使います。 torch.max torch.maxはTensor配列の最大値を取得します。まず対象となるTensor配列を、3行4列...
Machine Learning

【PyTorch】エポックに応じて自動で学習率を変えるtorch.optim.lr_scheduler

PyTorchで、エポックに応じて学習率を変更するSchedulerの基本的な使い方を見ていきます。 PyTorchに実装されているScheduler 以下、リンク先ドキュメントから、PyTorchに実装されているSchedulerは14種...
Machine Learning

PyTorchのモデルの保存と読み込み方法

PyTorchにモデルの保存と読み込みには大きく分けて2種類の方法があります。1つ目はtorch.save/torch.loadを使う方法で、2つ目はTorchScript形式で保存/読み込む方法です。 参考記事 - Saving and ...
Machine Learning

【PyTorch】Focal Lossの実装と効果の確認【自作損失関数】

PyTorchにおけるFocal Lossの実装を行ない、簡単な追試を行ない性能がどのようになるか見ていきます。 Focal Lossについて Facebook AI Research (FAIR)によって2017年に物体検出を対象に提案さ...
Machine Learning

PyTorchで自作の損失関数(loss function)を使う

PyTorchで自作の損失関数(ロス関数)を使う方法について見ていきます。 自作損失関数の定義 自作損失関数はnn.Moduleを継承して、基本的には定義します。 import torch from torch import nn clas...
Book

【初学者向け本】やさしく学ぶ機械学習を理解するための数学のきほん

立石賢吾さんの書かれた本「やさしく学ぶ機械学習を理解するための数学のきほん」が評判が良いの一通り読んでみたので感想を書いていきます。 これまで、他の入門書で最小二乗法、最急降下法、正則化の理解が進まなかった人にオススメの本です。 感想 機械...